Pure transformers have shown great potential for vision tasks recently. However, their accuracy in small or medium datasets is not satisfactory. Although some existing methods introduce a CNN as a teacher to guide the training process by distillation, the gap between teacher and student networks would lead to sub-optimal performance. In this work, we propose a new One-shot Vision transformer search framework with Online distillation, namely OVO. OVO samples sub-nets for both teacher and student networks for better distillation results. Benefiting from the online distillation, thousands of subnets in the supernet are well-trained without extra finetuning or retraining. In experiments, OVO-Ti achieves 73.32% top-1 accuracy on ImageNet and 75.2% on CIFAR-100, respectively.
translated by 谷歌翻译
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.
translated by 谷歌翻译
Evaluating neural network performance is critical to deep neural network design but a costly procedure. Neural predictors provide an efficient solution by treating architectures as samples and learning to estimate their performance on a given task. However, existing predictors are task-dependent, predominantly estimating neural network performance on image classification benchmarks. They are also search-space dependent; each predictor is designed to make predictions for a specific architecture search space with predefined topologies and set of operations. In this paper, we propose a novel All-in-One Predictor (AIO-P), which aims to pretrain neural predictors on architecture examples from multiple, separate computer vision (CV) task domains and multiple architecture spaces, and then transfer to unseen downstream CV tasks or neural architectures. We describe our proposed techniques for general graph representation, efficient predictor pretraining and knowledge infusion techniques, as well as methods to transfer to downstream tasks/spaces. Extensive experimental results show that AIO-P can achieve Mean Absolute Error (MAE) and Spearman's Rank Correlation (SRCC) below 1% and above 0.5, respectively, on a breadth of target downstream CV tasks with or without fine-tuning, outperforming a number of baselines. Moreover, AIO-P can directly transfer to new architectures not seen during training, accurately rank them and serve as an effective performance estimator when paired with an algorithm designed to preserve performance while reducing FLOPs.
translated by 谷歌翻译
Predicting neural architecture performance is a challenging task and is crucial to neural architecture design and search. Existing approaches either rely on neural performance predictors which are limited to modeling architectures in a predefined design space involving specific sets of operators and connection rules, and cannot generalize to unseen architectures, or resort to zero-cost proxies which are not always accurate. In this paper, we propose GENNAPE, a Generalized Neural Architecture Performance Estimator, which is pretrained on open neural architecture benchmarks, and aims to generalize to completely unseen architectures through combined innovations in network representation, contrastive pretraining, and fuzzy clustering-based predictor ensemble. Specifically, GENNAPE represents a given neural network as a Computation Graph (CG) of atomic operations which can model an arbitrary architecture. It first learns a graph encoder via Contrastive Learning to encourage network separation by topological features, and then trains multiple predictor heads, which are soft-aggregated according to the fuzzy membership of a neural network. Experiments show that GENNAPE pretrained on NAS-Bench-101 can achieve superior transferability to 5 different public neural network benchmarks, including NAS-Bench-201, NAS-Bench-301, MobileNet and ResNet families under no or minimum fine-tuning. We further introduce 3 challenging newly labelled neural network benchmarks: HiAML, Inception and Two-Path, which can concentrate in narrow accuracy ranges. Extensive experiments show that GENNAPE can correctly discern high-performance architectures in these families. Finally, when paired with a search algorithm, GENNAPE can find architectures that improve accuracy while reducing FLOPs on three families.
translated by 谷歌翻译
Multi-agent reinforcement learning (MARL) suffers from the non-stationarity problem, which is the ever-changing targets at every iteration when multiple agents update their policies at the same time. Starting from first principle, in this paper, we manage to solve the non-stationarity problem by proposing bidirectional action-dependent Q-learning (ACE). Central to the development of ACE is the sequential decision-making process wherein only one agent is allowed to take action at one time. Within this process, each agent maximizes its value function given the actions taken by the preceding agents at the inference stage. In the learning phase, each agent minimizes the TD error that is dependent on how the subsequent agents have reacted to their chosen action. Given the design of bidirectional dependency, ACE effectively turns a multiagent MDP into a single-agent MDP. We implement the ACE framework by identifying the proper network representation to formulate the action dependency, so that the sequential decision process is computed implicitly in one forward pass. To validate ACE, we compare it with strong baselines on two MARL benchmarks. Empirical experiments demonstrate that ACE outperforms the state-of-the-art algorithms on Google Research Football and StarCraft Multi-Agent Challenge by a large margin. In particular, on SMAC tasks, ACE achieves 100% success rate on almost all the hard and super-hard maps. We further study extensive research problems regarding ACE, including extension, generalization, and practicability. Code is made available to facilitate further research.
translated by 谷歌翻译
持续学习的现有工作(CL)的重点是减轻灾难性遗忘,即学习新任务时过去任务的模型绩效恶化。但是,CL系统的训练效率不足,这限制了CL系统在资源有限的方案下的现实应用。在这项工作中,我们提出了一个名为“稀疏持续学习”(SPARCL)的新颖框架,这是第一个利用稀疏性以使边缘设备上具有成本效益的持续学习的研究。 SPARCL通过三个方面的协同作用来实现训练加速度和准确性保护:体重稀疏性,数据效率和梯度稀疏性。具体而言,我们建议在整个CL过程中学习一个稀疏网络,动态数据删除(DDR),以删除信息较少的培训数据和动态梯度掩盖(DGM),以稀疏梯度更新。他们每个人不仅提高了效率,而且进一步减轻了灾难性的遗忘。 SPARCL始终提高现有最新CL方法(SOTA)CL方法的训练效率最多减少了训练失败,而且令人惊讶的是,SOTA的准确性最多最多提高了1.7%。 SPARCL还优于通过将SOTA稀疏训练方法适应CL设置的效率和准确性获得的竞争基线。我们还评估了SPARCL在真实手机上的有效性,进一步表明了我们方法的实际潜力。
translated by 谷歌翻译
视觉变压器在计算机视觉任务中表现出色。但是,其(本地)自我注意机制的计算成本很昂贵。相比之下,CNN具有内置的电感偏置效率更高。最近的作品表明,CNN有望通过学习建筑设计和培训协议来与视觉变形金刚竞争。然而,现有方法要么忽略多层次特征,要么缺乏动态繁荣,从而导致次优性能。在本文中,我们提出了一种名为MCA的新型注意力机制,该机制通过多个内核大小捕获了输入图像的不同模式,并启用具有门控机制的输入自适应权重。根据MCA,我们提出了一个名为Convformer的神经网络。争辩者采用了视觉变压器的一般体系结构,同时用我们提出的MCA代替了(本地)自我注意的机制。广泛的实验结果表明,在各种任务中,应变器优于相似的大小视觉变压器(VIT)和卷积神经网络(CNN)。例如,在ImageNet数据集上,交货式S,Convformer-l实现82.8%的最新性能,top-1的精度为83.6%。此外,在ADE20K上,Convformer-S优于1.5 miOU的Swin-T,在Coco上具有较小型号的Coco上的0.9边界盒AP。代码和型号将可用。
translated by 谷歌翻译
数据冗余在深神经网络(DNN)的输入和中间结果中无处不在。它为提高DNN性能和效率提供了许多重要的机会,并在大量工作中探索了。这些研究在几年中都在许多场所散布。他们关注的目标范围从图像到视频和文本,以及他们用于检测和利用数据冗余的技术在许多方面也有所不同。尚无对许多努力进行系统的检查和摘要,使研究人员很难对先前的工作,最新技术,差异和共享原则以及尚未探索的领域和方向进行全面看法。本文试图填补空白。它调查了有关该主题的数百篇论文,引入了一种新颖的分类法,以将各种技术纳入一个单一的分类框架,对用于利用数据冗余的主要方法进行了全面描述,以改善数据的多种DNN,并指出一组未来探索的研究机会。
translated by 谷歌翻译
在表面缺陷检测中,由于阳性和负样品数量的极度失衡,基于阳性样本的异常检测方法已受到越来越多的关注。具体而言,基于重建的方法是最受欢迎的方法。但是,退出的方法要么难以修复异常的前景或重建清晰的背景。因此,我们提出了一个清晰的内存调制自动编码器。首先,我们提出了一个新颖的清晰内存调节模块,该模块将编码和内存编码结合在一起,以忘记和输入的方式,从而修复异常的前景和保存透明背景。其次,提出了一般人工异常产生算法来模拟尽可能逼真和特征富含特征的异常。最后,我们提出了一种新型的多量表特征残差检测方法,用于缺陷分割,这使缺陷位置更加准确。 CMA-AE使用五个基准数据集上的11种最先进方法进行比较实验,显示F1量的平均平均改善平均为18.6%。
translated by 谷歌翻译
参考表达理解(REC)是视觉推理中最重要的任务之一,该任务需要模型来检测自然语言表达式所引用的目标对象。在拟议的管道中,一阶段参考表达理解(OSREC)已成为主要趋势,因为它合并了区域建议和选择阶段。许多最先进的OSREC模型采用多跳的推理策略,因为单个表达式中经常提到一系列对象,该对象需要多跳的推理来分析语义关系。但是,这些模型的一个未解决的问题是,在推理之前需要预先定义和固定推理步骤的数量,而忽略了表达式的不同复杂性。在本文中,我们提出了一个动态的多步推理网络,该网络允许根据推理状态和表达复杂性动态调整推理步骤。具体而言,我们采用变压器模块来记住和处理推理状态和增强学习策略,以动态推断推理步骤。这项工作可在几个REC数据集上实现最新性能或重大改进,从具有短表达式的Refcoco(+,G)到具有长而复杂的组成表达式的数据集。
translated by 谷歌翻译